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Analysis of topographic controls on depletion curves

derived from airborne lidar snow depth data

Dominik Schneider, Noah P. Molotch, Jeffrey S. Deems and

Thomas H. Painter
ABSTRACT
The annual consistency of spatial patterns of snow accumulation and melt suggests that the

evolution of these patterns, known as depletion curves, is useful for estimating basin water content

and runoff prediction. Theoretical snow cover depletion curves are used in models to parameterize

fractional snow-covered area (fSCA) based on modeled estimates of snow accumulation and

snowmelt. Directly measuring the spatio-temporal snow distribution, characterization of depletion

curves, and understanding how they vary across mountainous landscapes was not possible until the

recent U.S. National Aeronautics and Space Administration (NASA) Airborne Snow Observatory

(ASO). Herein, for the first time, high-resolution spatio-temporal snow depth information from the

ASO is used to derive observation-based snow cover depletion curves across physiographic

gradients by estimating the slope of the fSCA–snow depth relationship (i.e. depletion slope).

The depletion slope reveals important insights into snow processes as it is strongly related to snow

depth variability (r2¼ 0.58). Regression tree analysis between observed depletion slopes and

physiography, particularly vegetation height and terrain roughness, displays clear nonlinear

dynamics and explains 31% of the variance in depletion slope. This unique observation-based

analysis of snow cover depletion curves has implications for energy and water flux calculations

across many earth system models.
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HIGHLIGHTS

• Relationships between snow depth and fSCA (i.e. depletion slope) were robust over the 4 years

of study.

• Significant spatial variability in depletion slope is well correlated with snow depth variability.

• Increased vegetation height and decreased terrain roughness were associated with more

homogeneous snowpacks and lower depletion slopes.
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INTRODUCTION
The spatial distribution of snow water equivalent (SWE) is

affected by numerous processes at multiple scales including,

but not limited to, orography, wind and avalanche redistribu-

tion, and ablation dynamics driven by the land-surface

energy balance. Inherently, these factors are strongly influ-

enced by topography and vegetation and therefore result in

annually repeating spatial patterns (Kirnbauer & Bloschl

; König & Sturm ; Deems et al. ; Sturm &

Wagner ). Our ability to characterize these persistent pat-

terns of snow cover and their relationships with snow

accumulation have direct relevance for forecasting water

supplies (Potts ; Hannaford et al. ; Kolberg &

Gottschalk ) and estimating land–atmosphere energy

exchange and atmospheric processes (Flanner & Zender

). In addition, patterns of snow distribution have rel-

evance for understanding the distribution of soil moisture

(Harpold & Molotch ), ecosystem response to water

availability (Trujillo et al. ), and wintertime animal move-

ment and habitat (Parker et al. ; Bhattacharyya et al.

). Depletion curves that link the snow-covered area

(SCA) with SWE are a frequently used method for accurately

estimating the contributing area to snowmelt runoff

(Anderson ; Luce et al. ) and for characterizing

snow-albedo feedbacks within land-surface and general circu-

lation models (Niu & Yang ; Swenson & Lawrence ).

The existing literature regarding depletion curves typi-

cally relates SWE and SCA using empirical relationships

or probability distribution functions for modeling appli-

cations. These cover a variety of spatial scales from point-

based derivations over hillslopes (Anderson ; Luce

et al. ; Luce & Tarboton ), physically based gridded

models applied to the watershed scale (Clark et al. ), and

regional to global-scale land-surface models (Niu & Yang

; Swenson & Lawrence ; Driscoll et al. ). How-

ever, the scale at which snow heterogeneity is consistent is

ambiguous, prompting statistical parameterizations of

depletion curves based on the coefficient of variation (CV)

of SWE (Liston ). Estimates of the CV of SWE and

snow depth for different environments have been provided

in the literature based on field studies (Liston ; Clark

et al. ); however, these are broad classifications that
om http://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
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may not hold true at horizontal scales larger than 100 m,

in mixed landscapes, or for elevation differences larger

than 200 m (Essery & Pomeroy ; Clark et al. ).

Importantly, satellite-based methods of SWE estimation

have limited utility resolving the CV of SWE and snow

depth, given that the accuracy of SWE estimates is highly

sensitive to SWE spatial variability (Vander Jagt et al. ).

Multiple studies have investigated sub-grid depletion

curves of SWE based on terrain characteristics (Donald

et al. ; Niu & Yang ; Swenson & Lawrence ;

Helbig et al. ; Fassnacht et al. ; Driscoll et al.

). In particular, Niu & Yang () and Swenson &

Lawrence () observed that snow cover depletion pat-

terns across the USA varied substantially between cells

with differing sub-grid variances in elevation. Accordingly,

they developed scale-variant SWE depletion curve parame-

terizations based on sub-grid elevation variability.

Topographic controls on SWE–SCA relationships exhibit

significant interannual consistency (Fassnacht et al. ;

Driscoll et al. ), suggesting that the shape of depletion

curves is largely controlled by the terrain that affects both

snow accumulation and ablation.

Few studies have explicitly investigated the relationship

between snow depth and SCA, perhaps because snow depth

has been perceived as less relevant than SWE for estimating

water supply. Helbig et al. () parameterized a snow

depth depletion curve with the sub-grid standard deviation

of snow depth at peak accumulation. Similarly, Egli et al.

() indicated that estimates of maximum snow depth dis-

tribution were critical to model the evolution of basin mean

snow depth and SCA throughout the melt season. López-

Moreno et al. () observed a consistent spatial pattern

of the CV of snow depth across multiple lidar acquisitions

in time, and Egli & Jonas () found that variation in

year-to-year snow depth depletion was largely controlled

by the standard deviation of snow depth at peak snow

depth. Other works have also related the standard deviation

of snow depth to the variability of the underlying terrain

(Marchand & Killingtveit ; López-Moreno et al. ;

Helbig et al. ). These studies suggest that topographic

variability that affects the mean and standard deviation of
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snow depth will influence the relationship between snow

depth and SCA.

These previous studies were largely based on theory,

modeling results, or relatively sparse measurements of the

snowpack in time or space because regular, spatially exten-

sive measurements such as those of the U.S. National

Aeronautics and Space Administration (NASA) Airborne

Snow Observatory (ASO) to assess depletion curve charac-

teristics have not been available until the last 7 years.

Hence, we still lack a process-level understanding of the

spatial variability in depletion curve characteristics and

how individual terrain elements at scales less than 100 m

affect this behavior.

The NASA ASO dataset offers a new opportunity to

observe and investigate spatial differences in depletion

curves that result from topographic influences on snow

accumulation and ablation processes (Painter et al. ).

The ASO dataset provides high spatial resolution time

series of lidar-derived snow depth and hyperspectral

measurements of snow properties over multiple years from

which relationships between SCA and snow depth can be

determined. ASO also produces a SWE dataset that com-

bines the lidar-derived snow depth with modeled density,

but we focus on snow depth depletion curves in this study

to keep the analysis anchored by direct measurements.

However, improvements in characterization of snow depth

depletion curve variability are relevant to the estimation of

basin SWE since snow depth varies an order of magnitude

more than snow density (Mizukami & Perica ).

Our objective is to gain insight into the processes by

which snow and terrain interact to produce differences in

SCA. We do not attempt to parameterize a universal

depletion curve but rather to assess the influence of terrain

characteristics on depletion curve shape. Specifically, we

ask: what are the primary physiographic controls on the

characteristics of snow depth depletion curves?
Figure 1 | Landcover at 500 m resolution with 250 m elevation contours and location

map of the Tuolumne basin, CA, USA. Landcover was determined based on a

spectral reflectance classification by ASO. Elevation contours were extracted

from an ASO lidar-derived DEM. Additionally, water and ice were delineated

from the National Hydrography Dataset (U.S. Geological Survey 2016).
METHODS

Site description

This study was conducted on data collected by the ASO in

the Tuolumne River basin in the Sierra Nevada Mountains
://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
in CA, USA (Figure 1). The basin area is 1,175 km2 with

land cover that is 48% vegetation, 50% rock/talus, 2%

open water, and << 1% permanent snow/ice. The elevation

range of 1,127–3,997 m encompasses four distinct ecological

zones: the lower montane forest; upper montane forest; a

sub-alpine mixed-meadow/coniferous forest zone; and an

alpine zone with large granitic features, talus slopes, and

limited herbaceous vegetation (NPS ).

The climate is characterized as Mediterranean with rela-

tively mild winter temperatures and dry, warm summers.

The snow season typically lasts from November to March

with more than 70% of the yearly precipitation falling as

snow. A long-term record of SWE since 1967 (snow depth

is only available since 2004) from 17 snow pillows within

20 km of the Tuolumne Basin recorded a mean peak SWE

of 0.8 m with a range of 0.3–1.5 m. The four study years

were characterized by below average snowpack with 2014

and 2015 characterized as a severe dry snow drought

(Harpold et al. ), experiencing only 36 and 35% of the

climatological mean peak SWE, respectively. The years

2013 and 2016 also experienced below average snowpack

conditions, but less severely, with the data from the snow pil-

lows reporting 62 and 71% of climatological peak SWE
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(data available from http://cdec.water.ca.gov/). Runoff from

the watershed flows into the Hetch Hetchy Reservoir, the

water supply for the City of San Francisco and other Bay

Area municipalities.

Data sources

We use the ASO dataset which is derived from a paired scan-

ning lidar and imaging spectrometer (Painter et al. ). We

use the ASO 3 m resolution snow-free digital elevationmodel

(DEM), 3 m vegetation height, and 3 m resolution snow

depth datasets. The ASO flew approximately weekly from

near peak SWE through the snowmelt season, with six flights

in 2013, ten in 2014, eight in 2015, and eight in 2016. Painter

et al. () report amean absolute vertical error of 8 cmand a

bias of <1 cm at 3 m spatial resolution when compared with

manually measured snow depths. Further details about ASO

and data processing can be found in Painter et al. ().

The 3 m resolution gridded snow depth data are aggre-

gated to two new 495 m (nominally 500 m) resolution

datasets, containing the mean and standard deviation of

snow depth for each 500 m grid cell, respectively. Similarly,

fractional SCA (fSCA) maps at 500-m resolution are derived

from the 3 m gridded snow depth data based on a binary

snow-free/snow-on schema. Pixels at the edge of the

domain were not included if the 500 m grid cell extended

past the boundary of the basin and pixels containing water

bodies were also removed. We chose 500 m resolution for

the analyses herein because it is the scale at which daily sat-

ellite observations of fSCA exist from the MODerate-

resolution Imaging Spectroradiometer (MODIS); hence,

our results are theoretically transferable to applications

using MODIS data. We consider the ASO snow-free classifi-

cation to be robust, because the original 3 m gridded snow

depth data were masked for snow-free areas based on spec-

tral data from the spectrometer (Painter et al. ). ASO

SCA has also compared well against SCA derived from

0.3 m resolution World View imagery, with Recall, Pre-

cision, Accuracy, and F statistics all >0.99 (Bair et al. ).

Deriving depletion curves

Wederived depletion curves for each 500 m grid cell through

time using the 33flights available from theASO. For each grid
om http://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
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cell, we analyzed 33 snow depth data points versus 33 fSCA

data points and characterized the depletion curve with a

bilinear regression between snow depth (dependent variable)

and fSCA (independent variable). Theoretical considerations

would motivate a curvilinear fit because fSCA can, by defi-

nition, only increase to a value of one, whereas maximum

snow depth is unbounded (Liston ). However, we

observed distinctly linear relationships between snow depth

and fSCA for low fSCA and snow depth values in each grid

cell, which is consistent with previous studies (Swenson &

Lawrence ). As stated above, the objective of this

work is not to parameterize a universal depletion curve but

rather to evaluate the relationships between topographic

characteristics and snow depletion dynamics. Hence, we

quantify the depletion curve for each 500 m pixel based on

a segmented bilinear regression, resulting in two slopes and

a breakpoint value between the two linear segments.

We tested the statistical relationship for a significant

breakpoint (p< 0.1) in the bilinear regression based on a

Davies’ Test as implemented in the R package ‘segmented’

(Muggeo , ). The coordinate of the breakpoint rep-

resents the fSCA and snow depth at which the fitted slope

of the depletion curve changes (Figure 2(a)–2(c)). Grid cells

without a significant breakpoint were fit with an ordinary

least squares linear regression and the slope tested for signifi-

cance. Grid cells with no breakpoint but with significant

slopes less than 1.6 were included in our analyses under the

assumption that these slopes reflect a similar process as the

first slope of the bilinear regression but did not accumulate

snow beyond the theoretical breakpoint (Figure 2(d)).

Visual inspection of the data indicated that significant

linear slopes greater than 1.6 typically represented grid cells

that did not fully deplete within the ASO observation

period and the x-intercept for these linear models were

often much greater than zero (Supplementary Figure S1).

Consequently, we examined the topographic controls on

the first slope of the bilinear regression and slope values of

the ordinary linear regression below values of 1.6, and we

denote these as the ‘depletion slope’ – directly defined by

the breakpoint coordinates and a y-intercept of zero. Signifi-

cant y-intercept differences from zero (p< 0.05) are rare,

and we consider this to be a function of vertical uncertainty

in the measurements. The upper slope of the bilinear

regression was found to be uncorrelated with topography.

http://cdec.water.ca.gov/
http://cdec.water.ca.gov/


Figure 2 | (a–d) Example depletion curves from four of the 2,596 grid cells from the Tuolumne. These were chosen because they represent a range of depletion slopes and nicely illustrate

the observed depletion dynamics. All breakpoints and slopes are statistically significant (p< 0.1). Differences from 0 of the y-intercept are not statistically significant (p< 0.05).

(e) The distribution of variance explained by the models in each of the 2,596 grid cells.
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This is consistent with the concept that the upper portions of

the curves describe dynamics of snow depths greater than

the sub-grid topographic variability. Thus, they are not expli-

citly addressed herein.

Relating depletion slope to topography

Weanalyze 2,596 grid cells (500 m) for relationships between

topographic variables and the depletion slope. Focusing on

the depletion slope is particularly revealing with regard to

the compounded result from various snow distribution pro-

cesses. Fundamentally, steeper depletion slopes describe a

relatively heterogeneous snow depth distribution where

snowpacks covering rough terrain result in areas of relatively

deep snow accumulations. As such, for an equivalent
://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
decrease in snow depth, the decline in fSCA for grid cells

with these deep pockets of snow is relatively small compared

with grid cells with shallower, more uniform snow distri-

butions. Intuitively, these different pockets of snow are

influenced by the underlying and surrounding topography.

We use regression tree analysis (Breiman ) to identify

potential physiographic controls (independent variables) on

the depletion slope (dependent variable). We consider a

range of physiographic variables that have demonstrated phys-

ical or statistical relationships with snow depth previously

under the assumption that the snow depth–fSCA relationship

is determined both by the magnitude and variability of snow

depth.We investigate three different scales of control including

grid cell scale (500 m) physiography, inter-grid cell effects, and

sub-grid variability within each grid cell (Table 1).



Table 1 | Variables used in a regression tree to explain depletion curve slopes

Variable name Short name Resolution Definition/Units Source

Grid cell scale physiography

Elevation elev 495 m Elevation from the summer flight; meters Elder et al. (, )

Slope zness 495 m Sin(slope); ranges 0–1; dimensionless Balk & Elder (); Erxleben
et al. (); Fassnacht et al.
()

Northness northness 495 m Cos(aspect); ranges 0–1; dimensionless Balk & Elder (); Erxleben
et al. (); Fassnacht et al.
()

Eastness eastness 495 m Sin(aspect); ranges 0–1; dimensionless Balk & Elder (); Erxleben
et al. (); Fassnacht et al.
()

Vegetation height vegheight 495 m Mean vegetation height measured by ASO
from the summer flight; meters

Deems et al. (); Trujillo
et al. (); Painter et al.
()

Inter-grid cell variability

Topographic position
index

tpi 495 m from a 3 × 3
pixel window
around each pixel

Elevation difference of a pixel from the
mean of the surrounding pixels; meters

Revuelto et al. (); GDAL
()

Relief relief 495 m from a 3 × 3
pixel window
around each pixel

Maximum elevation difference between
any two of the surrounding pixels;
meters

Bookhagen & Burbank ();
GDAL ()

Sub-grid variability

Standard deviation of
elevation

stdelev 495 m from 45 m Standard deviation of elevation from 45 m
DEM; meters

Marchand & Killingveit ()

Standard deviation of
slope

stdslope 495 m from 45 m Standard deviation of slope from 45 m
DEM; shown to detect changes in slope
at multiple scales; radians

Grohmann et al. ();
Fassnacht et al. ()

Standard deviation of
maximum
curvature

stdmaxcurv 495 m from 45 m Standard deviation of maximum curvature
from 45 m DEM; maximum curvature
from SAGA GIS; dimensionless

Marchand & Killingveit ();
López-Moreno et al. ();
Conrad et al. ()

Terrain variability Δh/Δw 495 m from 3 m Terrain variability metric defined in
Equation (1) in Helbig et al. ();
computed from the 3 m DEM;
dimensionless

Helbig et al. ()

Variables were chosen based on their existing use in the literature; sources listed are by no means exhaustive.
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First, the pixel-scale physiographic variables represent

potential physical process controls on the magnitude of

snow depth: elevation (elev), slope (zness), aspect (northness;

eastness), and vegetation height (vegheight). Second, the

inter-pixel topographic variables, topographic position index

(tpi) and relief, quantify the topographic variability within a

3 × 3 pixel window around each 500 m grid cell and also rep-

resent potential controls on the magnitude of snow depth.

Third, variables representing sub-grid cell scale variability
om http://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
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describe terrain roughness based on elevation, slope, and cur-

vature within each 500 m grid cell and represent potential

controls on the variability of snow depth. Further information

on the pixel-scale and inter-pixel-scale variables are provided

in Table 1 and the references therein. Further detail on the

sub-grid cell variables is included below as these variables

are less prevalent in the literature.

We evaluated two scales of sub-grid cell variability at 3

and 45 m resolutions. At the finer, 3 m scale, we derive the
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‘Δh/Δw’ parameter, which represents the ratio of the typical

height of a terrain feature to the typical width of a terrain

feature. Larger Δh/Δw values indicate a greater relative pro-

trusion of the terrain. We calculated Δh/Δw for each 500 m

grid cell from the 3 m ASO DEM after the following

equation (Helbig et al. ):

Δh
Δw

¼ [(@xz)
2 þ (@yz)

2]
2

( )1=2

(1)

where ∂xz and ∂yz are the first partial derivatives of elevation,
i.e. the orthogonal slope components (Neteler et al. ).

At the coarser scale, we quantify the standard deviation

of elevation (stdelev), the standard deviation of slope

(stdslope), and the standard deviation of maximum curva-

ture (stdmaxcurv). Previous studies have shown the length

scale at which snow distribution and depletion processes

change to be between 6 and 40 m (Deems et al. ;

Trujillo et al. ; Schirmer et al. ), so we use a 45 m

resolution DEM in order to explicitly treat variation native

to processes operative at, or greater than, this scale and

the 3 m DEM to capture the processes at finer scales.

Regression trees have commonly been used to estimate

the spatial distribution of snow (e.g. Elder et al. ; Balk

& Elder ; Molotch et al. ). A regression tree can

model nonlinear interactions between the topography and
Figure 3 | The significant depletion slope values (a), the fraction of grid cells with significant de

(c). The value of each 500 m grid cell was computed based on the standard deviatio

values are divided into 20% quantiles, so that each color represents the same num

versus average standard deviations of snow depth with the best-fit linear relationshi

2166/nh.2020.267.

://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
depletion slope. We grew regression trees until additional

splits no longer improved the cross-validated r2 by 0.001.

We subsequently pruned the regression trees to an optimal

complexity by selecting the number of splits corresponding

to within 1 standard error of the minimum mean squared

error (Breiman ; R Core Team ; Therneau et al. ).
RESULTS AND DISCUSSION

Depletion curves

Relationships between snow depth and fSCA are remark-

ably consistent in all 4 years despite significant interannual

variability in weather patterns, i.e. points from different

years plot along the same depletion curve in Figure 2. On

average, the model for each grid cell explained 81% of the

variance in snow depth (Figure 2(e)). Moreover, 84% of

depletion slopes fall within the 95% confidence interval of

the mean cross-validated depletion slope (where four

depletion slopes were calculated with the data for each

year iteratively removed). This suggests that the snow

depth–fSCA relationships presented here are robust even

in a year with an otherwise anomalous snowpack.

The range of the 2,596 depletion slopes analyzed with

respect to topography is 0.20–3.06 with a mean of 0.73

(Figure 3(a)). The spatial pattern of grid cells that had
pletion slopes by elevation (b), and temporally averaged standard deviations of snow depth

ns of the 3 m snow depth observations within each 500 m grid cell on each date. The map

ber of observations. 250 m elevation contours are shown for context. (d) Depletion slopes

p. Please refer to the online version of this paper to see this figure in color: http://dx.doi.10.

http://dx.doi.10.2166/nh.2020.267
http://dx.doi.10.2166/nh.2020.267
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statistically significant depletion slopes corresponds to

higher elevation grid cells (mean 2,822 m with a range of

1,276–3,607 m) of the basin (Figure 3(a) and 3(b); see

Figure 1 for elevation contours). At lower elevations, shal-

low snow depths and a lack of clear depletion dynamics –

likely driven by the drought conditions during the study

period – rendered the regressions statistically insignificant

(white, Figure 3(a)). The highest depletion slopes (darkest

colors, Figure 3(a)) roughly correspond with deeper snow

and occur along the southern and northern basin divides.

The lowest values (lightest colors, Figure 3(a)) are clustered

in the southeast.

The temporally averaged standard deviations of snow

depth (Figure 3(c)) exhibit a similar spatial pattern as the

depletion slope (Figure 3(a)). A positive relationship

between depletion slope and snow depth standard deviation

exists across the basin with r2¼ 0.58; p< 0.01 (Figure 3(d)).

This supports our interpretation of the depletion slope that

grid cells with steeper depletion slopes have more hetero-

geneous snowpacks.
Topographic controls on depletion curves

None of the topographic variables has a strong individual

relationship with the depletion slope (Table 2).

The highest magnitude correlation with the depletion

slope is displayed by the standard deviation of maximum ter-

rain curvature (r¼ 0.27) followed by the Δh/Δw parameter
Table 2 | The single variable Kendall rank correlation (two-sided) and associated p-value

between each of the physiographic predictor variables and the depletion slope

Topographic variable Kendall rank correlation p-value

stdmaxcurv 0.27 < 0.01

Δh/Δw 0.26 < 0.01

stdslope 0.25 < 0.01

vegheight � 0.23 < 0.01

stdelev 0.21 < 0.01

elev 0.20 < 0.01

northness 0.19 < 0.01

relief 0.13 < 0.01

tpi 0.13 < 0.01

zness 0.09 < 0.01

eastness 0.01 0.41

om http://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
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(r¼ 0.26) and the standard deviation of terrain slope (r¼
0.25). The prevalence of three different sub-pixel topo-

graphic variables indicates that sub-pixel terrain variability

exerts substantial influence on the depletion slope. This find-

ing agrees well with previous work, showing snow depth

variability is well correlated with topographic variability,

in part due to wind redistribution (Winstral et al. ;

Erickson et al. ). All correlations are statistically signifi-

cant except for eastness, possibly due to gradients in

precipitation shadowing from north to south in the Tuo-

lumne Basin.

The regression tree analysis explains 31% (95% CI:

±0.2%) of the variance in the depletion slope (Figure 4).

Vegetation height explains the most variance with the

depletion slope, with taller vegetation corresponding with

smaller depletion slopes and shorter to no vegetation corre-

sponding with larger depletion slopes. This implies that

taller vegetation leads to more homogeneous snowpacks

and shorter vegetation leads to more heterogeneous snow-

packs, which agree with the previous work showing that

areas with forests have more homogenous snow distribution

due to reduced wind redistribution (Hiemstra et al. ;

López-Moreno & Latron ). We interpret this split in

the regression tree as indicative of differences in accumu-

lation and depletion dynamics above and below the
Figure 4 | The resultant regression tree for predicting depletion slope using the physio-

graphic variables. The boxes are shaded light to dark indicating low to high

depletion slope, respectively. The top number in each box is the depletion

slope estimated by the regression tree. The percent in each box is the percent

of data in each bin. The value under the box is the value of the independent

variable at which the model split the data.
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timberline. We note that northness, elev, and multiple sub-

grid cell variables are used for subsequent splits both

above and below the tree line. A key difference between

the regression tree results and the single variable correlation

presented in Table 2 is the nonlinearity inherent in the

regression tree results. This is apparent with the appearance

of elev, stdmaxcurv, and northness multiple times at differ-

ent levels of the tree. They explain a higher variance than

other variables for individual subsets of the data.

We observe that increased terrain roughness at sub-grid

scales – represented by the stdmaxcurv, stdelev, and Δh/Δw

variables – correlates with larger depletion slopes at multiple

nodes in the regression tree. Lower sub-grid terrain variabil-

ity is associated with lower depletion slope values, consistent

with expectations of relatively homogenous snow distri-

bution. This finding is intuitive, given that these areas have

shallower terrain depressions in which to trap snow. In

the latter stages of depletion, decreases in snow depth in

these areas will yield relatively large decreases in SCA

because large portions of bare ground will be exposed

nearly simultaneously across the grid cell. We also tested

sub-grid standard deviation of vegetation height as another

measure of sub-grid variability that could potentially be

important near the tree line, but found mean vegetation

height to explain more variance.

Northness occurs twice in the regression tree, and in

each case, larger northness values are associated with

increased depletion slopes, i.e. north-facing grid cells exhibit

more heterogeneous snow distribution which is congruent

with Lehning et al. (). This may be a result of preferential

snow accumulation on northeast-facing slopes due to prefer-

ential deposition of precipitation and snow drift (Lehning

et al. ; Dadic et al. ). Moreover, flow separation

across ridge-tops can produce cornices which can exhibit

particularly heterogeneous snow depths (Anderton et al.

). We also considered increased small-scale terrain

variability, e.g. boulder fields, as a confounding factor but

found no correlation between Δh/Δw and northness.

Higher elevations are associated with steeper depletion

slopes and therefore a more heterogeneous snowpack.

Further work is warranted to explore the physical processes

linking the depletion slope and elevation, but several possi-

bilities exist. Increased snow heterogeneity at higher

elevations can be produced by more prevalent wind
://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
redistribution effects, i.e. at higher elevations, increased

snowfall and wind speeds and lower-density snow result in

greater wind redistribution relative to lower elevations. In

addition, ridgelines that exhibit cornices are typically at

the higher elevations. Conversely, shallow depletion slopes

would result from a less-distinct accumulation season, e.g.

at the lowest elevations, where snowfall results in broad,

shallow coverage but quickly melts away. In addition, we

might also expect grid cells with high elevation and high

terrain curvature to have steep depletion slopes as a conse-

quence of avalanche redistribution which leaves narrow

areas of high snow depth.

Implications

The relationship between snow depth and fSCA appears to

be consistent across 4 years during the depletion period,

suggesting that remotely sensed fSCA contains a large

amount of information regarding snow distribution. More-

over, we show, for the first time, that repeat lidar scans of

snow depth distribution are a novel data source for develop-

ing fSCA–snow depth relationships over large areas (i.e.

>1,000 km2). The establishment of these relationships

from explicit observations provides a framework for improv-

ing depletion curve parameterizations in hydrologic, land-

surface, and climate models with the expansion of the

ASO program to other mountain ranges and other efforts

to explicitly map snow depth and fSCA (e.g. Nolan et al.

). Incorporating physically representative empirical fac-

tors that capture accumulation and ablation dynamics over

multiple scales could result in improved spatial represen-

tation of snow-free and SCAs in models thus improving

energy balance calculations.

The findings presented in this paper are conceptually

consistent with a global classification system of SWE varia-

bility used for parameterizing probability distribution

depletion curves (Sturm et al. ; Liston ). It is

encouraging that depletion curves developed from high-res-

olution spatio-temporal data similarly describe more

heterogeneous snowpacks in areas with greater topographic

variability and greater wind speeds.

We see a significantly larger range in CV of snow depth

than previously reported with the mean observed sub-grid

cell CV (3 m spatial resolution snow depth within each
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500 m grid cell) ranging from 2.4 to 34.0 across all dates.

This is compared with field values of CV of snow depth

for mountainous regions of 0.1–3 (Clark et al. ). We con-

sider this inconsistency to be a function of scale. The 3 m

spatial resolution snow depth dataset from ASO samples

the complete range of terrain and snow depths compared

with the studies reviewed in Clark et al. (), and thus cap-

tures snow depth extremes.

The results of our regression tree analyses are specific

to the Tuolumne basin for two very dry years and two

dry to average years. Future analyses of repeat lidar

measurements across time and space are warranted to

determine the spatio-temporal transferability of our

results. In this regard, the regression tree analysis

misses the extremes of the range of depletion slope

values, which is not surprising given an r2 value of

0.31. There is considerable variability in the observed

depletion slopes (Figure 3(a)) that may have resulted

from local processes that our predictor variables do not

capture. This suggests that there were either too few

grid cells with very high depletion slopes for a meaning-

ful statistical relationship at the extremes of the observed

parameters, or that a key variable is missing from our

analysis. Furthermore, grid cells without a breakpoint

but with linear slopes greater than 1.6 were excluded

from the topographic analysis (see Methods and Sup-

plementary Information for details); ASO flights did not

extend late enough into the year to observe the lowest

values of fSCA and depth for these grid cells.

Herein, we show that snow depletion curve shape is

inherently linked to snow depth distribution. Hence,

further analysis of remotely sensed fSCA depletion may

improve understanding of the processes controlling snow

distribution. In particular, the fSCA and snow depth com-

ponents of the depletion slope may be analogous to the

scale break or fractal dimension reported in previous

studies that investigated fractal scaling in snow depth distri-

butions (Deems et al. , ; Trujillo et al. ;

Schirmer & Lehning ). Further work aimed at identify-

ing relationships between topography and the snow depth

value corresponding to the depletion curve breakpoint

could provide a means to parameterize depletion curve

shape within hydrologic models. This could provide

useful information not only about the depletion slope
om http://iwaponline.com/hr/article-pdf/52/1/253/847025/nh0520253.pdf
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during ablation, but also about the capacity of the terrain

to trap snow in concavities.

We also performed the same analysis with SWE from

ASO to link to the previous literature but did not find a

consistent bilinear relationship. We might expect differ-

ences in the shapes of depletion curves derived from

SWE rather than snow depth because density strongly

increases early in the ablation season, thus offsetting

decreases in snow depth. Consistent density during melt

as fSCA is decreasing may then contribute to a more

dynamic relationship between SWE and fSCA. ASO SWE

estimates use field-measurement constrained, model-based

snow density information with density uncertainties of

12–30 kg m�3 (Painter et al. ). Future work evaluating

SWE depletion with respect to topography is warranted.

Given the extensive use of SWE depletion curves in hydro-

logic modeling, improved linkage between snow depth

depletion curves and SWE depletion curves would also

prove valuable.
CONCLUSIONS

We derived individual depletion curves for 500 m grid

cells using a lidar-derived, high-resolution, spatio-temporal

dataset of observed snow depth and analyzed the effect of

physiography on these depletion curves. We found that

relationships between snow depth and fSCA (i.e. depletion

slope) were robust over the 4 years of study with a mean

r2 value of 0.81. Additionally, 84% of presented depletion

slopes fall within the 95% confidence interval of the mean

cross-validated depletion slope. These depletion slopes

exhibited significant variability across the watershed. In

this context, we show that a positive relationship with

r2¼ 0.58; p< 0.01 between depletion slopes and snow

depth variability exists across the basin. We also show

that sub-pixel and pixel-scale terrain variables explain

31% of the spatial variability in the depletion slope. In

particular, increased vegetation height and decreased

sub-pixel terrain variability were associated with more

homogeneous snowpacks and lower depletion slopes.

These results illustrate that repeat, distributed snow

depth measurements such as those from the NASA ASO

can provide insights to the influence of topography on
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the evolution of snow distribution. Such understanding

has important implications for developing parameteriza-

tions of snow cover depletion curves across

physiographic gradients. Given that parameterizations of

snow cover depletion underpin sub-grid representation

of energy and water fluxes across a range of earth

system models, the results and approach presented

herein has potentially broad applicability.
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